
Soware Testing: e Big Picture

Itamar Turner-Trauring (itamar@codewithoutrules.com)

Business goal: Learn what to build

Means:
Human
testing

Understanding
Users

←
Understanding
Runtime Behavior

Means:
Automated

testing
↓ ↑

Correct
Functionality

→
Stable Functionality

Business goal: Build based on learning

Choose the appropriate ones to use for your particular needs and situation.

Understanding Users

Will people buy your product?
Will a design change result in more signups?
Will users understand how your soware works?

ese are all questions that cannot be answered by comparing your soware to a specification.
Instead you need empirical knowledge: you need to observe what actual human beings do when
presented with your soware.

Relevant testing techniques include:

Usability tests.
Minimum viable product testing ("Lean Startup").
A/B testing.

Understanding Runtime Behavior

How does your soware behave under load?
Does your soware have race conditions?
Does your soware break with unexpected inputs?



ese questions can't always be answered by comparing your soware to a specification. Once your
soware is complex enough you can't fully understand or predict how it will behave. You need to
observe it actually running to understand its behavior.

Relevant testing techniques include:

Stress tests and soak tests.
Gathering tracebacks and exceptions from your production logs.

Correct Functionality

Does your soware actually match the specification?
Does it do what it's supposed to?

It's tempting to say that automated tests can prove this, but remember the unit test that checked that
2 + 2 is 5. On a more fundamental level, soware can technically match a specification and
completely fail to achieve the goal of the specification. Only a human can understand the meaning of
the specification and decide if the soware matches it.

Relevant testing techniques include:

Manual user interface tests (e.g. a QA person using your website).
Code review.

Stable Functionality

Does your public API return the same results for the same inputs?
Is your code providing the guarantees it ought to provide?

Humans are not a good way to test this. Humans are prey good at ignoring small changes: if a
buon changes from "Send Now" to "Send now" you might not even notice at all. In contrast,
soware will break if your API changes from sendNow() to send_now(), or if the return type
changes subtly.

is means a public API, an API that other soware relies on, needs stability in order to be correct.
Writing automated tests for private APIs, or code that is changing rapidly, will result in high
maintenance costs as you continuously update your tests.

Relevant testing techniques include:

Unit tests, integration tests, and other similar automated API tests.
Automated user interface tests (e.g. Selenium tests for websites).
Compiler checks and linters.


